If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2-48y+32=0
a = 8; b = -48; c = +32;
Δ = b2-4ac
Δ = -482-4·8·32
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-16\sqrt{5}}{2*8}=\frac{48-16\sqrt{5}}{16} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+16\sqrt{5}}{2*8}=\frac{48+16\sqrt{5}}{16} $
| .-15=3–3/4x | | a+2=24 | | j+-5=4 | | x^2-6x+15=14 | | 2/3(3x-2)+6=1/6(4x+24) | | 4=w/4 | | 2*x-x+3*x-2*x=8 | | 2x+2=x+136 | | 5x-1=-20 | | 5*x-20=80 | | c–-8=18 | | x^-6x+13=0 | | x^2-200x-500=0 | | 4=r-9 | | 3/17=51/3x | | -16p-6(4-4p)=4(p-6)-12 | | n+-97=1 | | 0.28571428571(x+4)=6 | | -152=2g-5+5g | | n=3+2/9 | | (n+8)(n+7)=0 | | 7=1/5x-3 | | 2(x+2)=3x+3 | | 2^x-200*x-500=0 | | 8+(1/x-2)=88 | | 5/8y-1/2=1/3 | | -3r(1+6r)=14-r | | x/5-6=2x-15 | | 9f=21(12f−2) | | 3/x+5=8/x+2 | | 2x-4/5=x+4 | | 4x^2+75=45 |